Solving mixed integer nonlinear programming problems for mine production planning with stockpiling

نویسندگان

  • Andreas Bley
  • Natashia Boland
  • Gary Froyland
  • Mark Zuckerberg
چکیده

The open-pit mine production scheduling problem has received a great deal of attention in recent years, both in the academic literature, and in the mining industry. Optimization approaches to strategic planning for mine exploitation have become the industry standard, as the recent review of Newman et al. [19] highlights. However most of these approaches focus on extraction sequencing, and don’t consider the material flow after mining. In particular, the use of stockpiling to manage processing plant capacity, and the interplay of material flows from mine to stockpile, mine to processing plant and stockpile to plant, has not been treated as an integrated part of mine schedule optimization. One of the key reasons is that material of different grades becomes mixed on a stockpile, leading to difficult nonconvex, nonlinear optimization models. Here we show that the special structure of such models can be exploited to yield effective algorithms that incorporate post-mining material flows and stockpile management as an integrated part of mine production scheduling. The results give a more realistic assessment of the NPV that can be realized by a mining project than is possible with current approaches. We address the solution of the open pit mine production scheduling problem (OPMPSP) with a single stockpile (OPMPSP+S). The addition of a stockpile adds a relatively small number of quadratic constraints to the formulation of the OPMPSP and turns the problem from a mixed-integer linear into a mixed-integer nonlinear program. We develop several extended formulations of the OPMPSP+S and discuss the strength of the linear outer approximations obtained by relaxing their nonlinear constraints. We also introduce an aggressive branching scheme that can force the violation of the quadratic stockpiling constraints to be arbitrarily close to zero and a primal heuristic that produces a fully feasible solution of OPMPSP+S from an integer feasible solution of OPMPSP which violates these constraints. Combining these two techniques with a branch-and-bound approach,we obtain an algorithm that yields fully feasible solutions of OPMPSP+S arbitrarily close to the optimum. Experimental results for realistic benchmark instances show that this algorithm is very efficient in practice. Our methodology is easily extendable to multiple stockpiles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Chance Constrained Integer Programming Model for Open Pit Long-Term Production Planning

The mine production planning defines a sequence of block extraction to obtain the highest NPV under a number of constraints. Mathematical programming has become a widespread approach to optimize production planning, for open pit mines since the 1960s. However, the previous and existing models are found to be limited in their ability to explicitly incorporate the ore grade uncertainty into the p...

متن کامل

Solving a generalized aggregate production planning problem by genetic algorithms

This paper presents a genetic algorithm (GA) for solving a generalized model of single-item resource-constrained aggregate production planning (APP) with linear cost functions. APP belongs to a class of pro-duction planning problems in which there is a single production variable representing the total production of all products. We linearize a linear mixed-integer model of APP subject to hiring...

متن کامل

A mixed integer linear programming formulation for a multi-stage, multi-Product, multi-vehicle aggregate production-distribution planning problem

In today’s competitive market place, companies seek an efficient structure of supply chain so as to provide customers with highest value and achieve competitive advantage. This requires a broader perspective than just the borders of an individual company during a supply chain. This paper investigates an aggregate production planning problem integrated with distribution issues in a supply chain ...

متن کامل

An imperialist competitive algorithm for solving the production scheduling problem in open pit mine

Production scheduling (planning) of an open-pit mine is the procedure during which the rock blocks are assigned to different production periods in a way that the highest net present value of the project achieved subject to operational constraints. The paper introduces a new and computationally less expensive meta-heuristic technique known as imperialist competitive algorithm (ICA) for long-term...

متن کامل

Sufficient global optimality conditions for general mixed integer nonlinear programming problems

‎In this paper‎, ‎some KKT type sufficient global optimality conditions‎ ‎for general mixed integer nonlinear programming problems with‎ ‎equality and inequality constraints (MINPP) are established‎. ‎We achieve‎ ‎this by employing a Lagrange function for MINPP‎. ‎In addition‎, ‎verifiable sufficient global optimality conditions for general mixed‎ ‎integer quadratic programming problems are der...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012